Size Ramsey results for paths versus stars
نویسندگان
چکیده
A general upper bound for the size Ramsey number f(Ps , KI,t) matching the exact value for s ::; 7 and t sufficiently large is presented. Moreover, the remaining unknown values of the size Ramsey number for pairs of forests of order at most five are determined.
منابع مشابه
On size multipartite Ramsey numbers for stars versus paths and cycles
Let Kl×t be a complete, balanced, multipartite graph consisting of l partite sets and t vertices in each partite set. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite Ramsey number mj(G1, G2) is the smallest integer t such that every factorization of the graph Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1 or F2 contains G2. In 2007, Syafrizal e...
متن کاملSize Multipartite Ramsey Numbers for Small Paths Versus Stripes
For graphs G and H, the size balanced multipartite Ramsey number ) , ( H G m j is defined as the smallest positive integer s such that any arbitrary two red/blue coloring of the graph s j K × forces the appearance of a red G or a blue H . In this paper we find the exact values of the multipartite Ramsey numbers ) , ( 2 3 nK P m j and ) , ( 2 4 nK P m j .
متن کاملRamsey numbers of ordered graphs
An ordered graph G< is a graph G with vertices ordered by the linear ordering <. The ordered Ramsey number R(G<, c) is the minimum number N such that every ordered complete graph with c-colored edges and at least N vertices contains a monochromatic copy of G<. For unordered graphs it is known that Ramsey numbers of graphs with degrees bounded by a constant are linear with respect to the number ...
متن کاملThe Ramsey Numbers for Disjoint Union of Stars
The Ramsey number for a graph G versus a graph H, denoted by R(G,H), is the smallest positive integer n such that for any graph F of order n, either F contains G as a subgraph or F contains H as a subgraph. In this paper, we investigate the Ramsey numbers for union of stars versus small cycle and small wheel. We show that if ni ≥ 3 for i = 1, 2, . . . , k and ni ≥ ni+1 ≥ √ ni − 2, then R( ∪k i=...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 18 شماره
صفحات -
تاریخ انتشار 1998